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The southernmost worm, Scottnema lindsayae (Nematoda):
diversity, dispersal and ecological stability
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Abstract The nematode worm Scotinema lindsayae
(Cephalobidae) was found near the base of the Beard-
more Glacier in the Transantarctic Mountains 83.48°S,
over 5° further south than previously recorded. Identi-
fication was confirmed using morphological analyses of
males, females and juvenile stages, and by DNA
sequencing of the ITS1 region of the ribosomal RNA
tandem repeat unit. These data revealed no discern-
able morphological or ITS rDNA sequence variation
between the extreme southern population of S. lind-
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sayae and disparate populations from the McMurdo
Dry Valleys in south Victoria Land (77-78°S). Based
on these results, we suggest that broadcast dispersal,
with accompanying high rates of gene flow, establish
the extreme southern distribution of the phylum Nem-
atoda. High abundance, low rates of diversification and
lack of an apparent biogeographic structure across lati-
tudinal and environmental gradients implies that their
presence in simple Antarctic soil ecosystems is stable,
so long as physical and biological controls on their dis-
tributions remain within viable parameters. Recent
evidence that S. lindsayae populations are in decline
suggests that their high dispersal rates are insufficient
to buffer current, unfavorable environmental changes
and may foreshadow longer-term ecosystem disrup-
tion.

Introduction

Scottnema lindsayae Timm 1971 is the most abundant
and often the single metazoan representative in the
southern Victoria Land soils (Freckman and Virginia
1998; Powers et al. 1998; Treonis et al. 1999; Virginia
and Wall 1[999). This endemic species was first
described and ranked by Timm (1971) from a location
near the La Croix Glacier in Taylor Valley, South Vic-
toria Land and is the sole member of a monotypic
genus within the Cephalobidae. It has been found in
Northern Victoria Land near Cape Hallett (Barrett
et al. 206j6) and reported from the opposite side of the
continent, in East Antarctica, at the Syowa station on
East Ongul Island (Mouratov et al. 20(1; Shishida
and Ohyama [986) and near Admiralty Bay on the
Antarctic Peninsula (Mouratov et al. 2001) (Fig. 1).
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Fig. 1 Distribution of Scotr-

nema lindsayae. The majority

of records are from South Vic- o
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Morphologically S. lindsayae is most similar to cepha-
lob species of the genus Acrobeles. Distinguishing fea-
tures of S. lindsayae are extended cephalic probolae
and five fine, triangular projections from between the
cephalic probolae (dorsal and subventral). This micro-
bivore (feeding on yeast and bacteria) has a very long
lifecycle (218 days at 10°C), low fecundity and a rela-
tively long embryonic and post-embryonic develop-
ment time compared to other cephalob genera, such as
Acrobeles (Barrett et al. 2004; Moorhead et al. 2002;
Overhoff et al. 1993; Porazinska et al. 2(102; Porazinska
and Wall 2002). Thus, its life cycle more closely resem-
bles a “K-selected” reproductive strategy (Johnson
et al. 1974). Three other nematode species occur in
Southern Victoria Land and are not closely related to
S. lindsayae—all are members of different families
(Monbhysteridae, Dorylaimidae, Plectidae).

Much of the work on the distribution of S. lindsayae
at local scales has been from the McMurdo Dry Val-
leys, where mean annual air temperatures range from
—16 to =21°C, and annual precipitation is less than
10 cm (Clow et al. 1987; Doran et al. 2062a). About 60—
70% of the soils across this landscape are devoid of
metazoans (Freckman and Virginia 1998).

Scottmema lindsayae dominates the soil invertebrate
community in abundance and biomass across the land-
scape compared to the three other nematode species
found in the Dry Valley region. It occurs where average
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soil temperatures (0-10 cm depth) range from —22.8 to
23.3°C, with soil surface temperatures about 1°C
higher than 5-10cm below the surface (Moorhead
etal. 2002; Treonis etal. 2000). Its distribution is
patchy across Taylor Valley and elsewhere, but soil
habitats for this species are characterized as having
lower moisture (soil moistures from 0.9-2.9%), higher
pH, higher EC and higher inorganic C (Freckman and
Virginia 1997) compared to habitats of the other three
species (Adams et al. 2006; Barrett et al. 2004, 2005;
Courtright et al. 2001; Porazinska et al. 2002).

Some 700km further south from the McMurdo
region and 500 km NNE of the South Pole in the vicin-
ities of the Beardmore and Shackleton Glaciers are
some of the southernmost exposed soils on earth. Vis-
its to this region by the New Zealand Alpine Club in
1959-1960, and by Wise in 1964-1965, had previously
reported the southernmost occurrences for several taxa
including mites, springtails (Collembola), rotifers,
lichens, moss and algae (Tyndale-Biscoe 196); Wise
and Shoup 1971). The predominant rock type near the
Beardmore Glacier are “Ross Supergroup” metasedi-
ments originally of the graywacke type with crosscut-
ting by granodiorites and quartz-diorite (Oliver 1972).
Smaller rock sediments in the Beardmore area are
predominantly gray to dark gray and can retain consid-
erable heat during favorable climatic conditions in the lim-
ited summer months with ground surface temperatures
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approaching 20°C (I. Hogg, unpublishd data). Fine-
grained material (<125 pm) is often found beneath
these smaller sediments. As in the Dry Valleys, liquid
water occurs from melt streams at the interface
between snow packs and rocky outcrops (Gooseff et al.
2003).

A putative adaptive response to survival in a cold,
dry climate, S. lindsayae are anhydrobiotic, wherein
they coil, cease observable metabolic activity (Treonis
et al. 2000) and like other nematodes may lose up to
99% of their water content (Crowe and Madin 1975;
Demeure et al. 1979). This desiccated condition facili-
tates wind dispersal (Nkem et al. 2006) within Taylor
Valley and suggests wind could be a primary mecha-
nism for long distance dispersal.

Previous work on Antarctic terrestrial invertebrates
(e.g., Collembola) has shown that large-scale ice struc-
tures such as glaciers as well as the Ross Sea are likely
to be appreciable barriers to dispersal/gene flow
between the Beardmore Glacier region and Victoria
Land (Stevens and Hogg 2003). In contrast, levels of
heterozygosity within and among populations of .
lindsayae collected from different valleys in Southern
Victoria Land show moderately high levels of gene
flow and no evidence of historical, long-term barriers
to dispersal (Courtright et al. 2000). However, analysis
of populations from more distant, isolated regions of
Antarctica would allow for a more rigorous examina-
tion of the genetic structure of the species across a
broader geographic scale, and allow testing of the gen-
erality of large-scale ice structures (e.g., glaciers) as
barriers to gene flow for terrestrial invertebrates.

Elevated rates of dispersal by eukaryotes smaller
than 2 mm have been implicated in ecosystem stability,
the idea being that forces that alter species composi-
tion are countered by high rates of immigration (Finlay
2002; Finlay and Fenchel 2004). However, high species
diversity and functional redundancy complicate the
task of identifying changes in ecosystem functioning
that are due to the presence or absence of individual
species. As the Antarctic Dry Valley soil ecosystem has
shown a marked decrease in the abundance of S. lind-
sayae (Doran et al. 2002b), its dominant soil metazoan,
the resilience and stability of this ecosystem will be dic-
tated by general patterns of dispersal and immigration.
Thus, the Dry Valley soil ecosystem provides an ideal
setting to investigate the relationship between dis-
persal and ecosystem stability because a single meta-
zoan species (S. lindsayae) plays a key role in
ecosystem functioning (carbon cycling; Barrett et al.,
unpublished data). As we show, potentially high rates
of dispersal are apparently insufficient to buffer popu-
lation declines of S. lindsayae attributed to recent

(decadal) environmental changes (Doran et al. 2002b),
implying short-term ecological functional instability in
response to environmental change.

Materials and methods

The sampling sites were located on Mt. Harcourt near
the base of the Beardmore Glacier (Fig. 1). Soil sam-
ples were collected from underneath small flat rocks
(<10 cm diameter) on an exposed ridge (S83°48.21",
E172°15.39, 800 m elev.). Two samples to 8 cm were
taken within a few meters of each other, one moist due
to its proximity to a melting snow patch and one drier
sample. Quantitative soil moisture and characteriza-
tion assays were not conducted in order that all of the
sampled soil could be used in the nematode extraction
process. Total fresh weight of soil from which nema-
todes were extracted was 112 and 94 g respectively.
Nematodes were extracted from soil using wet sieving
methods followed by sugar density gradient centrifuga-
tion modified for cold-adapted nematodes, including
chilled extraction solutions (Freckman and Virginia
1993, 1997; Powers et al. 1998). Extracted nematodes
were visualized in brightfield with an Olympus CK40
inverted compound light microscope. The extraction
process was non-concomitant with other soils, and care
was taken to prevent the contamination of soils and
extraction equipment. All soil processing equipment
was cleaned thoroughly prior to extraction, and trans-
fer of soils from field sample bags to extraction con-
tainers was carried out under a sterile laminar flow
hood. Live nematodes were preserved in either 95%
ETOH or 5% hot formalin solution for subsequent
DNA and morphological analyses, respectively, and
for voucher specimen preparation.

DNA was extracted from individual preserved spec-
imens using DNeasy animal tissue extraction Kkits
(Qiagen Inc., Valencia CA). Ribosomal DNA of the
internally transcribed spacer 1 region was PCR ampli-
fied using the 18S primer designed by Vrain et al.
(1992) which binds in the posterior 3’ portion of the 18s
small ribosomal subunit, and the reverse primer of
Cherry et al. (1997), which binds in the 5’ end of the
5.8s subunit region. Polymerase chain reactions were
carried out in 25 pl volumes. PCR mix was added to
each tube: 2.5 ul 10x PCR buffer, 1.5 ul MgChL, 1 ul
dANTP mixture (10 mM each), 1 ul of 10 pM forward
primer, 1 ul of 10 pM reverse primer, 0.25 ul of Tag
polymerase (Continental Laboratory Products, Sand
Diego, CA, ), 19.55 pl of distilled water and 5 pl of
DNA (not quantified, but approximately 10 ng/ul). All
PCR reactions were run in a PTC-100 Thermocycler
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(MJ Research, Inc., Waltham, MA, USA) with the fol-
lowing cycling profile: 1 cycle of 94°C for 7 min fol-
lowed by 35 cycles of 94°C for 1 min, 50°C for 1 min,
72°C for 1 min. The last step was 72°C for 10 min. PCR
products were purified using QIAquick PCR purifica-
tion kit (Qiagen Inc.) and sequenced in both directions
at the University of Florida ICBR sequencing core
facility and the BYU DNA Sequencing Center on Per-
kin FElmer/Applied Biosystems automated DNA
sequencers. DNA sequences of nematodes sampled
from the Beardmore glacier were aligned to sequences
from other samples of S. lindsayae collected from other
areas of Antarctica, including multiple individuals
from several locations in the McMurdo Dry Valleys:
three populations from the Lake Fryxell basin, two
populations from Garwood Valley (49 km south of
Taylor Valley), one population from Mt. Falconer and
three populations from the Lake Hoare basin
(Table 1). The ITS rDNA sequence of S. lindsayae
from 83.48° South was deposited in GenBank (Acces-
sion #AY626779). Voucher specimens of representa-
tive males, females and juveniles from the same sample
have been deposited in the University of California-
Davis Nematode Collection (UCDNC #3240).

Results and discussion

The sample taken from the site moistened by glacial
meltwater contained S. lindsayae individuals as follows:
33 live and 4 dead males, 51 live and 31 dead females
and 89 live and 43 dead juveniles. It also contained two
individual rotifers. The second sample taken from a
drier area was devoid of nematodes but contained 2
individual tardigrades. Identification of the rotifers and
tardigrades in the samples is ongoing. Although the
Beardmore region and the rest of the continental
Antarctic interior has probably been devoid of most

metazoan life since the early to mid Neogene, at least
3 Ma; (Ashworth and Kuschel 2003; Askin 1992; Flem-
ing and Barron 1996; Marchant et al. 2002), our find-
ings establish the southernmost indigenous, extant
distribution of the Phylum Nematoda.

The 505 bp ITS rDNA sequence of S. lindsayae from
latitude 83.48°S was identical to all of the sequences of
individuals representing populations from the
McMurdo Dry Valleys area. Similarly, we detected no
conspicuous morphological deviations from the origi-
nal (Timm 1971) and detailed (Vinciguerra 1994)
descriptions of S. lindsayae.

The abundance of live nematodes (1.71g~! fresh
soil) representing juvenile through adult life stages sug-
gests that they were extracted from a healthy popula-
tion and do not represent anhydrobiotic immigrants
that were revived upon soil processing. However, the
lack of variation at the ITS locus indicates low levels of
population structure (Adams 1998; Adams et al. 1998;
Cherry etal. 1997; Nguyen et al. 2001; Powers et al.
1997) despite the vast geographic distance between the
Beardmore and Southern Victoria Land populations
(approximately 713 km). For example, numerous stud-
ies have utilized this marker to investigate population
structure, and particularly species boundaries, where it
typically performs well at revealing meta-population
history, presence or absence of gene flow and perma-
nent lineage-splitting events (Adams 2001, Nadler
et al. 2000). Our results are consistent with previous
surveys of S. lindsayae using mtDNA and 28s rDNA
loci (Courtright et al. 2000), which also revealed lim-
ited genetic variability and structure among McMurdo
Dry Valley populations. Larger numbers of individuals
from several populations sampled from the Transant-
arctic Mountains area, and use of more variable
genetic loci, will be instrumental in exploring the exis-
tence of fine-scale variability and dispersal patterns
within and among populations.

Table 1 Location of sampled
populations of  Scottnema
lindsayae

Location Population name Latitude Longitude
(south) (east)
Beardmore Glacier K122A 83° 48.210/ 172° 15.390
Lake Brownsworth, Lower Brownsworth Met 77° 26.185’ 162° 42.301"
Wright Valley Station 4

Lake Colteen, Garwood Valley K052 Block 2 78° 01.489" 163° 52.381"
Lake Hoare, Taylor Valley LLH near A2 Eudory 4 77° 37932 162% 52.646'
Lake Fryxell, Taylor Valley F6 CO28 77% 36476 163° 15.077"
Lake Hoare, Taylor Valley LH Lake to soil A3 777 37.9407 162° 53.051'
Lake Hoare, Taylor Valley LH Lake tosoil A4 77° 37.9407 162° 53.051"
Lake Fryxell, Taylor Valley F6 Bulk 1 77° 36.483' 163° 14.891"
Lake Hoare, Taylor Valley LH near A2 Eudory 3 77°37.932 162° 52.046'
Mt Falconer, Taylor Valley Mt Faulk A2 77° 34.303’ 163° 09.660'
Lake Colleen, Garwood Valley K052 Block 4 78° 01.505' 163° 52.424'
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There have been few comparisons of the species of
soil invertebrates found in the McMurdo Dry Valleys
to the Beardmore Glacier area. Phylogeographic and
gene flow analyses of the springtail Gomphiocephalus
hodgsoni reveal the McMurdo Sound (which lies
between the Beardmore Glacier and Southern Victoria
Land) to have been an effective geographic barrier to
its dispersal (Stevens and Hogg 2003). However, a sim-
ilar phylogeographic pattern and population structure
does not exist for S. lindsayae in the McMurdo Dry
Valleys (Courtright etal. 2000). The lack of ITS1
sequence variation among populations of S. lindsayae
separated by over 700 km and 5° in latitude preclude
the notion that the McMurdo Sound effectively retards
gene flow or significantly structures disparate popula-
tions of S. lindsayae, and is consistent with broadcast
aeolian transport (Nkem et al. 2006). Katabatics are
the predominant surface winds throughout continental
Antarctica, which originate high on Antarctic Plateau
and move with increasing speed and temperature
towards the continental margins (Parish and Bromwich
1987). The warm air then rises and moves toward the
pole to replace the colder, vacating surface air (King
and Turner 1997). The strength and cyclical direction
of Antarctic winds could provide consistent aeolian
transport for S. lindsayae across virtually all of Antarc-
tica.

Previous work suggests that most organisms smaller
than 2 mm have global distributions and persist wher-
ever their required habitats are realized (Finlay 2002;
Finlay and Fenchel 2004). Such distributions and per-
sistence are thought to be a consequence of ubiquitous
dispersal driven by huge population sizes, and the con-
sequently low probability of local extinction (Finlay
2002; Finlay and Fenchel 2004). S. lindsayae is endemic
to Antarctica, yet distributed broadly across the conti-
nent where viable soil parameters exist and plays a
much greater than expected role in ecosystem func-
tioning, particularly carbon efflux; (Barrett et al., forth-
coming). However, recent declines in population size
attributed to climate change (Doran et al. 2002b) indi-
cate high sensitivity and low stability of the soil ecosys-
tem in response to environmental change, and may
portend profound changes in ecosystem functioning.
The widespread distribution and potentially high dis-
persal potential of S. lindsayae inferred in the present
study indicate that failure to counter the observed
decline in population sizes in the Antarctic Dry Valley
soil ecosystem is due to an altered physicochemical or
biological environment which obviates immigration.
Alternatively, life history attributes and physiological
constraints may account for the regional decrease in
population size in Antarctic Dry Valley soils. In the

case of S. lindsayae, a K-selective reproductive strategy
will result in higher variability of population size, but is
also predicted to confer stability across broader
(regional) geographic scales (Pribil and Houlahan
2003).

The continuing decline of S. lindsayae population
sizes (Doran et al. 2002b) in the Antarctic Dry Valleys
is linear (Barrett et al., unpublished data), and as yet
shows no perceptible response via recruitment or
fecundity to the present climate and ecosystem changes
(1986 to the present) despite immigration via wind dis-
persal (Nkem et al. 2006). Thus, the historically high
abundances and rates of dispersal of S. lindsayae are
not sufficient to mount an immediate response to envi-
ronmental perturbation. Given the prominent role of
S. lindsayae in mediating Antarctic Dry Valley soil eco-
system functioning, we predict that environmental
changes responsible for decreases in population size
and distribution will have an immediate and long-term
impact on the biodiversity and productivity of these
soils.
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