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SUMMARY

There are two ways to maintain fitness in the face of
infection: resistance is a host’s ability to reduce
microbe load and disease tolerance is the ability of
the host to endure the negative health effects of
infection. Resistance and disease tolerance should
be applicable to any insult to the host and have
been explored in depth with regards to infection
but have not been examined in the context of cancer.
Here, we establish a framework for measuring and
separating resistance and disease tolerance to can-
cer in Drosophila melanogaster. We plot a disease
tolerance curve to cancer in wild-type flies and then
compare this to natural variants, identifying a line
with reduced cancer resistance. Quantitation of
these two traits opens an additional dimension for
analysis of cancer biology.

RESULTS AND DISCUSSION

Host immune defense strategies can be separated into the ability

to control pathogen burden, called resistance, and the ability of

the host to endure the negative health effects of infection, called

disease tolerance. Disease tolerance is the dose-response curve

relating host health to elicitor loads. While resistance is a heavily

studied aspect of immune response, disease tolerance is less

well understood. Originating in plant ecology studies (Caldwell

et al., 1958; Schafer, 1971), the concept of disease tolerance

was only recently introduced to animal immunity research (Ayres

et al., 2008; Råberg et al., 2007). Distinguishing between resis-

tance and disease tolerance is useful because they are funda-

mentally different strategies for surviving challenges. Applying

the concepts of resistance and disease tolerance has improved

our understanding of pathogenic infections (Iwasaki and Pillai,

2014; Medzhitov et al., 2012; Råberg, 2014; Vale et al., 2014)

and should be applicable to any insult to host health, like cancer,

not just infectious disease. We established a model to separate

resistance and tolerance to cancer to understand the role of

these immunological processes in cancer infections.

A System for Separating Resistance and Tolerance to
Cancer
The model organism Drosophila melanogaster is useful for

investigating both resistance and disease tolerance in infec-

tions because large numbers of animals can be infected with

precise doses of pathogens and the growth of the pathogens

and health of the host can be easily monitored (Ayres et al.,

2008; Ayres and Schneider, 2009; Howick and Lazzaro, 2014;

Rose et al., 2011; Rottschaefer and Lazzaro, 2012); we

reasoned the fly would be suitable for studying resistance

and tolerance to cancer. We used the Drosophila Oregon-R

strain as an initial wild-type strain in our experiments. We chose

to use a transplantable cancer model instead of an inducible

one because it let us precisely regulate and measure input ma-

terial (Ayres et al., 2008; Råberg et al., 2007; Regoes et al.,

2014). We used the Rasv12-H7 line of Drosophila hyperplastic

cancer cells, which expresses an oncogenic form of Ras, has

a UAS-GFP reporter, and has previously been shown to metas-

tasize throughout the fly and lead to premature death (Simcox

et al., 2008) (see Experimental Procedures). The hyperplastic

cells were delivered in a manner similar to microbial pathogens;

the cells were cultured in vitro, quantified, diluted, and injected

into adult flies (Figures 1A and 1B). We used survival (median

time to death) as a measure of disease progression and found

that, similar to microbial infections, cancer kills in a dose-

dependent manner, ranging from 8 to 21 days (Figure 1A)

whereas wounding controls would live for 29–32 days. To mea-

sure tumor load, we quantified the number of cancer cells on

the day of infection (day 0) and 6 days post-infection (PI) (day

6) by performing qPCR on DNA copies of the GFP gene, which

was carried by the tumor cells but not the hosts (see Experi-

mental Procedures). We chose to measure tumor load at

6 days PI to allow the cancer time to grow, but not so much

time as to pass the median time to death for flies given high

initial cancer doses. For each initial dose, cancer cells grew

about 10-fold by day 6 PI in OR flies (Figures 1B and S1).

We generated a cancer tolerance curve by plotting median

time to death for a given dose of cells against the cancer growth

(i.e., the number of cells measured 6 days post-inoculation for

that inoculation dose). (Figure 1C). These data were fit with a

linear regression model (r2 > 0.94) (Table S1). This design allows

the health of these flies to be describedwith two parameters: The

first is vigor (the health of the animal in the absence of disease,

which in this case is around 30 days, and the second is the slope

of the curve, which for this curve is�4.080 days per log of tumor

load (Figure 1C).

Natural Variation of Cancer Resistance
To investigate how genetic variation might influence resistance

and/or tolerance to cancer, we used two natural variant fly lines

from the Drosophila Genetics Reference Panel (DGRP; lines
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RAL-358 and RAL-359) (Mackay et al., 2012). We selected RAL-

358 andRAL-359 based on data from a pilot screen (Figure S2A).

We generated a survival dose-response curve for these fly lines

as described above (Figures S2B–S2G). RAL-358 died signifi-

cantly faster than both wild-type and RAL-359 at all cell doses

other than the highest dose of 20,000 cells (Figures 2A and

S2B–S2G). To determine the role resistance played in these sur-

vival changes, we measured the tumor load of these lines at

6 days PI. RAL-358 had consistently higher loads than either

wild-type or RAL-359 when injected with an initial dose of 10,

100, or 1,000 cells (Figures 2B and S1). All three fly lines had

equal tumor loads 6 days PI when injected with high initial doses

(10,000 or 20,000 cells) (Figures S1A and S1B). These data

demonstrate that RAL-358 has a resistance defect, experiencing

more than 100-fold tumor growth when given low initial doses of

tumor cells (Figures 2B–2D and S1).

Resistance and disease tolerance are not mutually exclusive

defense strategies but can act in concert in host defense. We

wondered whether the decrease in survival in cancer-laden

RAL-358 could also have a tolerance component. To investigate

the differences in cancer disease tolerance, we plotted tolerance

curves for all three fly lines (Figure 2C). We found that they had

similar tolerance curves, suggesting that tolerance was not

changing. Changes in resistance, however, are apparent in the

growth plots and disease tolerance curves (Figures 2B–2D and

S1). For example, the data for RAL-358 in the tolerance curve

are shifted toward the bottom right of the plot compared to

wild-type and RAL-359 (Figure 2C). The resistance defect we

found in RAL-358 is dose dependent, manifesting only at low

initial tumor inoculations (10–100 cells) (Figure 2D). This could

be due to decreased immune surveillance sensitivity, where de-

fenses, which can protect against tumor growth (Pastor-Pareja

et al., 2008), turn on only at higher initial tumor loads. These ex-

periments highlight the importance of performing a dose-

response curve when testing a health insult.

Applying Disease Tolerance to Cancer
Although the importance of resistance to cancer is well under-

stood and has been well leveraged in current cancer treatment

programs, cancer disease tolerance is not explicitly studied.

There is evidence in some human cancers that health loss

and survival rates do not always correlate with cancer burden,

provocatively suggesting a role for cancer disease tolerance

where hosts show different health effects given equal tumor

loads (Heyneman et al., 2001; Patz et al., 2000). Our line of in-

quiry here provides a quantitative conceptual methodology for

identifying unexplored aspects of host-cancer interactions that

could be utilized to improve the treatment and outcomes for

cancer patients, even when reduction or removal of cancer tis-

sue is not possible.

EXPERIMENTAL PROCEDURES

Flies, Cells, and Media

TheOregon-R strain was used as awild-type control, whileDrosophilaGenetic

Reference Panel lines RAL-358 and RAL-359were used as natural variants. Fly

strains were obtained from the BloomingtonDrosophila Stock Center (Mackay

et al., 2012). Flies were kept in standard fly bottles containing dextrose me-

dium (129.4 g dextrose, 7.4 g agar, 61.2 g corn meal, 32.4 g yeast, and 2.7 g

tegosept per liter; polypropylene round-bottom, 8-oz bottles plugged with

bonded dense weave cellulose acetate plugs, Genesee Scientific catalog

no. 49-100) and were housed at 25�C with 65% relative humidity and a

12-hr-light and 12-hr-dark cycle. The hyperplastic cell line Rasv12-H7, marked

with a UAS-GFP construct, was obtained from the Drosophila Genomics

Resource Center (Simcox et al., 2008). Cells were cultured as previously

described (Simcox et al., 2008; Simcox, 2013). Briefly, cells were cultured in

Figure 1. A Cancer Disease Tolerance

Curve Establishes a Framework for Sepa-

rating Resistance and Disease Tolerance

to Cancer

Wild-type (Oregon-R) adult male flies were in-

jected with doses varying from 10–20,000 KRas

hyperplastic cancer cells and were monitored for

survival (disease progression) and cancer load

(elicitor load).

(A) Survival curves were monitored for flies in-

jected with 10–20,000 KRas hyperplastic cancer

cells (n R 180 flies per dose). The survival curves

are significantly different (****p < 0.0001, log-rank

[Mantel-Cox] test).

(B) Rasv12-H7 fly cancer cells were injected to

adult flies. The initial dose (day 0) and subse-

quent cancer growth (day 6) were quantitatively

measured using a gfpmarker present in the cancer

cells but not the flies (n R 150 flies per dose per

day).

(C) A cancer disease tolerance curve was pre-

pared by plotting pairs of cancer load and survival

data for 18 cancer load/MTD pairs (n R 110 flies

per data point). This curve was fit with a linear

regression model (r2 > 0.94) (Table S1).
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Schneider’s media supplemented with 10% heat-inactivated fetal calf serum

(Sigma catalog no. F4135-100ML) and 1% penicillin-streptomycin solution so-

lution (HyClone catalog no. SV30010). Rasv12-H7 cells are strongly adherent

and were passaged by first rinsing the cells in chilled PBS and then incubated

for 5 min in 0.05% trypsin (HyClone catalog no. SH30236.01). Cells were

collected and diluted into an equal volume of media, centrifuged for 2 min,

and resuspended in new media. For infection experiments, the cells were

quantified using a hemocytometer and diluted to the desired doses. Frozen

stocks of cells were produced as previously described (Simcox, 2013).

Cell Injections into Adults

Different doses of Rasv12-H7 cells (10, 100, 1,000, 10,000, and 20,000 cells)

were injected into adult male flies aged 5–7 days old with control flies being in-

jected with cell-culture media. Flies received 50-nl injections in the anterior

abdomen. Injections were performed using a Picospritzer III (Parker Instru-

mentation) and a pulled glass needle as previously described (Ayres et al.,

2008). Cancer cell doses were counted using a hemocytometer immediately

prior to injection. Each dose was injected into R60 adult male flies, and

each experiment was replicated three times, thus n = R 180 flies per dose,

per fly line tested, resulting in R3,240 individual D. melanogaster being in-

jected for the survival portion of these experiments. Survival of the cancer in-

jected flies was counted every 24 hr post-infection (PI) until all flies were dead.

The median time to death (MTD) for each experiment was determined as used

as a measure of disease progression.

Quantifying Cancer Cell Growth

Rasv12-H7 cells carry an integrated UAS-GFP marker. Cancer load in flies

was determined by qPCR, amplifying DNA copies of the gfp maker using

previously published primers (Simcox et al., 2008; Portugal et al., 2011). Total

DNA was extracted using phenol-chloroform. We quantified gfp by pooling

five adult male flies to make one sample, and ten samples were taken per

dose both on the day of infection (day 0) and 6 days PI (day 6). Thus, n R

50 flies per dose per day, for five doses plus media controls, and each exper-

iment was replicated three times, resulting in the extraction of R1,800 flies in

batches of five. qPCR was performed on a StepOnePlus qRT-PCR system

and analyzed using StepOne software v.2.2.2 (Applied Biosystems). Reac-

tions were done using SYBR Green PCR Master Mix (Applied Biosystems)

using 15-ml reactions, in 96-well plates, using a relative standard curve.

Following a primary denaturation of 10 min at 95�C, the reactions were

done for 40 cycles of 95�C for 15 s and 60�C for 1 min. We used gfp primers

from Portugal et al. (2011) 50-GTC AGT GGA GAG GGT GAA GG-30 and 50-
ACT TCA GCA CGT GTC TTG TAG TTC-30. The standard curve was per-

formed using a serial dilution series (1:10) of Rasv12-H7 cells, quantified using

a hemocytometer. The gfp abundance relative to our standard curve pro-

vided a quantitative measure of initial cancer dose and cancer burden after

6 days post-infection. Using MTD as a measure of disease progression

and the cell growth at 6 days PI, we were able to plot disease tolerance

curves as shown in Figures 1 and 2.

Statistical Analyses

Statistical analyses were done using GraphPad Prism version 6 for Mac OS X.

The log-rank (Mantel-Cox) test was used to evaluate the survival curves. Two-

way ANOVA with Tukey’s multiple comparisons tests were used to analyze

cancer growth among the fly lines. Disease tolerance curves were fit with a

linear regression model after testing several other models (four-parameter sig-

moid, three-parameter sigmoid, and quadratic).

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and one table and can be found

with this article online at http://dx.doi.org/10.1016/j.celrep.2015.09.052.

Figure 2. Genetic Variation Alters Resis-

tance to Cancer

Wild-type (Oregon-R) and natural variant adult

male flies were injectedwith doses varying from 10

to 20,000 KRas hyperplastic cancer cells andwere

monitored for survival (disease progression) and

cancer load (pathogen load). Wild-type (Oregon-

R) is in black, RAL-358 is in blue, and RAL-359 is

shown in red.

(A) A survival curve of adult flies injected with 100

cancer cells, comparing wild-type and natural

variant flies. RAL-358 dies significantly faster than

wild-type or RAL-359 (****p < 0.0001, log-rank

[Mantel-Cox] test) (nR 180 flies per line), whereas

there is no significant difference between wild-

type and RAL-359.

(B) A cancer growth plot showing the initial dose of

100 cells and the cancer burden of flies 6 days

post-injection. RAL-358 has a significantly higher

cancer load than either wild-type or RAL-359

(****p < 0.0001, two-way ANOVA Tukey’s multiple

comparisons test) (nR 150 flies per dose per day).

(C) A cancer disease tolerance curve was pre-

pared for each of the three fly lines (wild-type,

RAL-358, and RAL-359) by plotting pairs of cancer

load and survival data for 18 cancer load/MTD

pairs for each line (n R 110 flies per data point).

These curves were each fit with a linear regression model (r2 > 0.94 for wild-type, r2 > 0.91 for RAL-358, and r2 > 0.91 for RAL-359). The slope of these lines is

similar (�4.1 for wild-type, �4.8 for RAL-358, and �4.2 for RAL-359) and the 95% confidence intervals overlap.

(D) The ratio of cancer growth over 6 days PI. Wild-type is in black, RAL-358 is in blue, and RAL-359 is shown in red (nR 150 flies per line per day in all of these

experiments). The data for each of these lines were fit with a log-log nonlinear regression, 0.12, 0.57, and 0.13 R2 for Or, RAL-358, and RAL-359, respectively. The

slope of the log-log non-linear regression is �0.13, �0.4, and �0.11 for Or, RAL-358, and RAL-359, respectively. The 95% confidence interval for the slope of

RAL-358 remains negative, while the 95% confidence interval for the slope of wild-type and RAL-359 ranges from negative to positive. In a non-linear log-log line

regression F test, one curve does not fit all the data (p < 0.0001).
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