
Trends
EPNs have been used in biological
control but improvement is needed to
realize their full potential as an alterna-
tive to chemical pesticides.

The genome sequences of six species
of EPNs are now available and more
are being sequenced.

As we increase our knowledge of the
genes underlying traits that are impor-
tant for the field efficacy of EPNs, these
genomic data will become more useful
in improving EPNs as biocontrol
agents.
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Entomopathogenic nematodes (EPNs) have been used in biological control but
improvement is needed to realize their full potential for broader application in
agriculture. Some improvements have been gained through selective breeding
and the isolation of additional species and populations. Having genomic
sequences for at least six EPNs opens the possibility of genetic improvement,
either by facilitating the selection of candidate genes for hypothesis-driven
studies of gene–trait relations or by genomics-assisted breeding for desirable
traits. However, the genomic data will be of limited use without a more mecha-
nistic understanding of the genes underlying traits that are important for bio-
logical control. Additionally, molecular tools are required to fully translate the
genomic resources into further functional studies and better biological control.

Entomopathogenic Nematodes in Biological Control
Global annual crop loss due to herbivory by pests is 32.1% [1]. Farmers and researchers have
applied many methods to reduce this crop loss, one of which is the application of specialized
insect-parasitic nematodes called EPNs. EPNs differ from other insect-parasitic nematodes in
two meaningful ways: (i) EPNs associate with symbiotic bacteria to facilitate pathogenesis; and
(ii) they rapidly kill their hosts, usually within 72 h after infection [2–4] (Figure 1). Entomopatho-
genic species within the genera Heterorhabditis and Steinernema are the most extensively
studied and most often used in biological control [4–7]. EPNs are highly pathogenic and are used
as biological control agents of numerous insect pests. They have been commercialized on
several continents and are used in large-scale agriculture and in individual home gardens.

Despite their promise as biological control agents, the lack of consistent efficacy in the field has
prevented these nematodes from being more widely used. Researchers have worked on
improving their efficacy against arthropod pests under field conditions for decades, using
two main strategies: (i) artificial selection; and (ii) genetic improvement via mutagenesis or other
molecular methods (Figure 2). Artificial selection is enhanced by the continued collection of new
EPN species and/or populations that are adapted to certain environmental conditions and pests
(Figure 2). Occasionally, locally adapted EPNs provide superior control when compared with
non-native species or populations [8–10]. Many new EPN isolates have been identified, which
may lead to increased genetic variation and the development of new nematode strains [11].
Isolation and/or breeding of EPNs for improved insect pest suppression relies on the identifica-
tion and manipulation of certain traits [12–14]. These traits include, but are not limited to,
increased tolerance to temperature, desiccation, and ultraviolet (UV) light, as well as increased or
modified host-seeking ability, virulence, and resistance to nematicides (Figure 3). Improving
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Figure 1. The Life Cycle of Entomopathogenic Nematodes (EPN). The infective juvenile (IJ) stage is a devel-
opmentally arrested third larval stage and is the only free-living stage of EPN; all other stages exist exclusively within the host.
EPN IJs carry symbiotic bacteria and search for potential insect hosts. They enter a host, gain access to the hemolymph,
and release their bacterial symbiont. The symbiont helps overcome host immunity and facilitates nutrient liberation from
insect tissues. The nematodes develop and reproduce in the resulting nutrient-rich environment until their population density
is high and resources begin to deplete, at which point new IJs develop and disperse, carrying the symbiotic bacteria to new
hosts. Adapted from [2].
these traits in EPNs has been done primarily by classical genetic techniques, such as breeding
and selection. However, traits improved this way are not always stable and individual trait gains
can sometime be lost once the selective pressure is removed [13]. Moreover, selection of some
traits can lead to the inadvertent reduction of others or of overall fitness [12,15,16]. Inbreeding
depression or other means of fitness loss during EPN mass production or as a result of
continuous laboratory culture are also concerns [17,18]. The second major strategy to improve
EPN field efficacy is to use modern genetic and molecular tools. These tools have not yet been
fully used to improve EPN field efficacy in biological control [12–14]. Progress has been made
toward tool development and technology transfer from the Caenorhabditis elegans research
community, but the application of modern techniques to improve EPN efficacy is still in its
infancy. EPNs are model nematode parasites for studies of ecology [19,20], behavior [21–23],
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Figure 2. Schematic Illustration of
how to Improve Entomopathogenic
Nematode (EPN) Traits for Enhan-
cing Field Efficacy. The recently
sequence genomes of EPN can be used
for selecting candidate genes that influ-
ence desirable traits and for identifying the
diversity of natural gene variants for artifi-
cial selection and genomics-assisted
breeding. Genome-wide association ana-
lysis of natural variants and strains
obtained by genomics-assisted breeding
could result in finding the candidate genes
underlying certain traits that, when further
validated by functional study of gene–trait
relations, may facilitate the improvement
of EPN traits for enhanced field efficacy.
Genomics-assisted breeding can be used
to improve EPN traits without knowing
specific gene–trait relations. Artificial
selection can be used to improve EPNs
without previous knowledge of genomes
or gene functions.
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Figure 3. Biotic and Abiotic Factors that Are Important for the Field Efficacy of Entomopathogenic Nema-
todes and Could Be Improved Using Classical Genetics or Molecular Techniques.
neurobiology [24], and host–parasite interactions [25,26]. Manipulation of the bacterial partner is
a strategy that may yield improvements in field efficacy-related traits, but here we focus on the
nematodes and the recently sequenced genomes [15,16]. The availability of multiple EPN
genomes should facilitate new and powerful studies of EPN biology and will be used to decipher
the function of individual genes in parasitism [27,28]. Here, we discuss the implications that the
recently available EPN genomes will have on their efficacy as biological control agents.

Traits Important for Biological Control and Their Improvement
Traits important for biological control can be grouped into three main categories: infectivity,
persistence, and storage stability [29] (Figure 3). Infectivity refers to the characteristics involved
with finding, infecting, and killing a target host. Persistence refers to traits that increase survival
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after application in the field, such as temperature, desiccation, and UV tolerance (Figure 3).
Storage stability of EPNs involves traits that increase the shelf life necessary for the distribution of
EPNs. Improving these traits and many others have the potential for ultimately increasing their
field efficacy.

For EPNs to be effective in biological control, they must be able to find and kill insect hosts. Thus,
attempts to increase and modify host-seeking behavior have been popular. Host seeking has
been shown to be a highly heritable trait, which can be enhanced through selective breeding
efforts for species such as Steinernema feltiae [15] and Steinernema carpocapsae [16,30]. The
research done to enhance host-seeking traits has relied solely on selective breeding and
the genes that are implicated in these processes are unknown. Host-seeking improvements
were correlated with an increase in overall fitness [15,16]. Unfortunately, the trade-off is a
reduction in desiccation tolerance, affecting storage stability [15,16]. The use of new genomic
data may reveal how the genes controlling these traits are genetically linked and provide new
strategies for enhancing these traits without compromising others.

Persistence is as important as infectivity for EPN efficacy. Desiccation tolerance is important for
EPN persistence and production. EPN species that forage near the soil surface tend to have
better desiccation tolerance [31]. Desiccation can induce EPN quiescence, which leads to a
longer shelf life and may also contribute to their longevity in the soil [31]. Storage stability is
essential for EPN longevity in the soil and for their commercial production and distribution.
Artificial selection and hybridization can enhance desiccation tolerance [32–34], but the removal
of selection pressure ultimately results in the loss of the desired traits [32,33]. Deep knowledge of
EPN genomes [27,28], especially the genetic regulatory networks controlling the traits, coupled
with improvements in genetic engineering for EPNs may provide new means to stabilize
enhanced traits.

Among the traits important for persistence, heat tolerance has been particularly well studied.
Increased heat tolerance allows EPNs to be applied in regions that experience high levels of heat
during certain seasons. The introduction of the heat shock gene hsp70A from C. elegans to
Heterorhabditis bacteriophora was the first successful attempt to make transgenic EPNs [35].
The incorporation of this gene led to a significant increase in resistance to heat stress [36].
Unfortunately, these transgenic EPNs did not exhibit enhanced persistence in the field [37,38].
This example highlights the necessity of having a comprehensive understanding of gene
functions related to fitness and field efficacy. A variety of stress-response genes in the insu-
lin/IGF-1 signaling pathway [27] and others are promising candidates for improving the field
efficacy of EPNs. Access to genomic information makes it feasible to study molecular mecha-
nisms using techniques including genetic transformation and RNAi.

In H. bacteriophora, heat tolerance is highly heritable and can be improved through selective
breeding. However, this is not the case for all EPNs [39,40]. Additionally, selective breeding for
heat tolerance can result in serious deterioration of other beneficial characteristics, such as host
seeking, host penetration, virulence, longevity, and reproduction potential [41]. With increased
understanding of the genetic basis of heat tolerance, researchers may be better able to design
strategies for such improvements. The recently available EPN genomes may help in these
efforts.

There are several caveats to acknowledge. One is that enhancing desired characteristics may
not directly translate into improved performance in the field, as was seen in the hsp70A example
[38]. Little is known about how these genes function when an EPN is released in the field. The
nuances found in these dynamic environments are difficult to replicate in the lab. Another caveat
is that the methods of enhancement need to be further developed in this system. Genetic
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transformation techniques in EPNs are still in their infancy and further research with these
techniques will eventually yield more consistent and effective results.

The Genome of Heterorhabditis bacteriophora
The genome sequence of H. bacteriophora revealed numerous genes putatively implicated in
parasitism and survival that could be manipulated for field applications [27]. It has also raised
many questions since the 77-Mb genome contains more than 10 000 genes encoding proteins
of unknown function (Table 1). The obligate association of H. bacteriophora with the bacterium
Photorhabdus luminescens has shaped the architecture and content of the nematode genome
because it relies on the bacteria for nutrient acquisition and metabolism [42]. The bacteria
also serve as a means by which the immune response of the insect is overcome [4,27,42].
Photorhabdus luminescens produces an arsenal of enzymes, including proteases, to overcome
host immunity, degrade host tissues, and make them available for the developing nematodes.
Furthermore, the bacteria prevent opportunistic fungi and other bacteria from making use of the
nutrient-rich insect cadaver. Certain species of EPNs, such as H. bacteriophora, rely on bacteria
to overcome host immunity and kill the host, whereas other EPNs, such as S. carpocapsae, are
lethal even without their bacteria and, therefore, may be reliant on the bacteria for nutrient
acquisition or sequestration of host resources from opportunistic soil microbes [43,44]. How-
ever, it is the nematode that must locate hosts, gain entry into the hemolymph, and persist in the
soil until a host is found, leaving plenty of room for genetic improvements to enhance field
efficacy.

For example, in C. elegans dauers (analogous to steinernematid infective juveniles), the insulin/
IGF-1 signaling pathways serve as regulators for development [45]. The roles of these pathways
include development of the dauer and adult stages, longevity, stress resistance, and even innate
immunity. The genes and proteins of these signaling pathways are thought to perform similar
functions in H. bacteriophora [45]. The 19 genes of the insulin/IGF-1 signaling pathway are
conserved in H. bacteriophora [27] and could be candidates for genetic manipulation to enhance
longevity and/or stress resistance, leading to better field efficacy (Figure 3).

Another potentially important gene family for the enhancement of H. bacteriophora is the
G-protein-coupled receptor (GPCR) family. There are at least 82 predicted GPCRs in the H.
bacteriophora genome [27] (Table 1). GPCRs are important in field efficacy because some are
sensory receptors functioning in olfaction and host-seeking behavior [46–48]. As noted above,
host seeking is a highly heritable trait and has been temporarily improved through selective
breeding [16,30]. GPCR abundance and diversity could be linked to the niche inhabited by a
nematode. In the case of EPNs, putative olfactory receptors could be used to enhance host
seeking or adjust host specificity. Increasing our knowledge of how GPCRs are used in host-
seeking behavior could be critical to improving or altering the host-seeking abilities of EPNs, thus
influencing field efficacy.

Genes that function in the symbiotic association between EPNs and the insect-pathogenic
bacteria they carry could be used to enhance the biological control potential of EPNs.
Heterorhabditis bacteriophora appears to have a reduced or modified immune response
compared with C. elegans [49]. It has fewer C-type lectin domain-containing proteins
(nine in H. bacteriophora compared with 133 in C. elegans), which function in the immune
response of C. elegans to bacterial infection [49,50]. This may be related to the association
between H. bacteriophora and P. luminescens [51]. However, it is not yet known to what
extent environmental bacterial infection might impair the efficacy of EPNs as biocontrol
agents and more research is needed. If it is demonstrated that bacterial infection diminishes
EPNs field efficacy against insect pests, this could be another area worth investigating
further.
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Table 1. Main Features of the Recently Sequenced Genomes of Entomopathogenic Nematodesa

Feature Nematode Species

Heterorhabditis
bacteriophora

Steinernema
carpocapsae

Steinernema
scapterisci

Steinernema
feltiae

Steinernema
glaseri

Steinernema
monticolum

Genome size (Mb) 77.0 85.6 79.4 82.4 92.9 89.3

N50 (bp) 312328 299566 90783 47472 37444 11556

Number of scaffolds 1263 1578 2877 5839 7515 14331

Number of predicted genes 21250 28313 31378 33459 34143 36007

G + C content (%) 32.2 45.5 48 47 47.6 42

Number of putative GPCR 82 604 731 883 806 690

Number of putative proteases
with signal peptides

19 268 357 267 248 423

Number of putative FAR proteins 3 41 42 43 54 38

aAbbreviations: GPCR; G-protein-coupled receptor; FAR; fatty acid- and retinol-binding.
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EPN-secreted proteases are known to influence the penetration of the nematode into the host
hemolymph [52], tissue degradation of insect hosts [53], as well as immune suppression [54],
and could be used to increase the field efficacy of EPNs in biocontrol. Heterorhabditis bacter-
iophora has fewer than 30 predicted protease and protease inhibitors in its secretome [27]
(Table 1). This may reflect the reliance of this nematode on P. luminescens for immune
suppression and tissue degradation of the insect host. It is possible that host killing by EPNs
could be improved simply by adding additional copies of genes already present, similar to the
transgenic inclusion of multiple endogenous cuticle-degrading proteases in entomopathogenic
fungi [55].

The genomic sequence of H. bacteriophora provides a long list of candidate genes that could be
used to improve infectivity and/or survival, and this list will be refined as our understanding of the
underlying biology increases. The successful application of tools from C. elegans (e.g., trans-
formations and RNAi) [56] in H. bacteriophora coupled with this archive of genetic information is
expected to lead to significant advances in the application of molecular genetics to improve the
field efficacy of EPNs in biological control.

The Genome of Steinernema carpocapsae
The genomes of S. carpocapsae and four congeners (S. feltiae, S. glaseri, S. monticolum, and S.
scapterisci) have recently been sequenced and annotated. Analyses of these genomes revealed
numerous genes that could be involved in parasitism by EPNs and are candidates for use in
programs to improve traits for biological control [28]. Similar to what has been found in the H.
bacteriophora genome, more than 10 000 predicted proteins (�37% of the predicted proteome)
appear to have no orthologs in other animals or even other nematodes [28]. Studying the
function of these orphan proteins could reveal genes that are important for infection or survival
and persistence and, thus, be useful for future transgenic endeavors in EPNs. Comparing
sequenced EPN genomes (Table 1) confirms that they are similar in size but differ considerably in
nucleotide prevalence (G + C content), which may affect the application of recombinant DNA
techniques for genetic enhancement. Gene expression and regulation are affected by codon
usage preferences [57], which has implications for technology transfer from C. elegans to the
EPNs [56], with techniques developed in C. elegans potentially being more easily applied to H.
bacteriophora due to their closer ancestry and similar nucleotide prevalence (Table 1) [27,28,58].
This needs to be further explored experimentally because there are only a few reports of
molecular techniques developed in C. elegans being applied to EPNs.

In contrast to the H. bacteriophora genome, steinernematids have a large variety of predicted
proteases and protease inhibitors with signal peptides (Table 1). A multigenome comparison
revealed Steinernema-specific expansions of serine and metalloproteases [28]. Proteases and
protease inhibitors are an important group of proteins for investigation in future selection and
recombinant studies since they are known to be important in invasion and host killing by
Steinernema [52,54]. Proteases in steinernematids have been shown to have an important role
in suppressing insect host immunity as well as tissue degradation [54,59–61]. There are
functional studies showing that protease inhibitors have a role in nematode evasion of host
immunity [62,63], and genome analysis revealed that several families of protease inhibitors are
expanded in steinernematids. One provocative possibility is that the host range and specificity
of EPNs may be influenced by their repertoire of secreted products and that using genetic
transformation, the host range, and/or specificity could be altered by the addition or removal of
certain secreted products from the secretome. Not enough is known about the evolution of
insect immunity, but as more genomes are studied, it seems that insect immunity could differ
dramatically between orders and that niche partitioning among EPNs could be based on
the abilities of individual species to overcome or avoid the immune response of certain
hosts [64,65].
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Fatty acid- and retinol-binding (FAR) proteins are another interesting gene family that was
expanded in the genomes of steinernematids [28]. FAR proteins are thought to have a key
role in parasitism by functioning in the sequestration of host retinoids as well as by contributing to
immune evasion or suppression, although their exact functional role is not well understood
[66,67]. FARs appear to be involved in nematode parasitism of animals, insects, and plants
[67–69], which makes understanding their mechanistic function important for both biocontrol
and disease treatment and prevention.

The availability of genomic sequence from multiples species of Steinernema provides many
candidate genes and gene families that could be used to improve infectivity and/or survival. It
also highlights the importance of more mechanistic studies of EPN biology and the need for
molecular tools to be more commonly applied in EPN research [56].

Methods for Trait Improvement
As mentioned above, artificial selection and genetic engineering are the two main options for trait
improvement in EPNs (Figure 2). Artificial selection does not require an understanding of genetic
mechanisms underlying selected traits. Having been done for thousands of years with crops and
livestock, individuals with certain traits are selected and crossed. This generates new cultivars
and/or breeds with improved or desired traits. We can now use genomic tools to understand
what genetic changes introduced by domestication and artificial selection are behind the
selected traits. This knowledge, combined with genetic engineering, has resulted in the more
efficient production of enhanced traits or novel combinations in many systems [70] (Figure 2).

There are several tools and traits that will aid in the effort of enhancing EPNs for better field
efficacy: (i) advanced genomic tools to identify the genes underlying desired traits; (ii) genetic
tools that can be applied to modify genes; (iii) short generation time of EPNs and their ability to be
cultured in vitro and in vivo; and (iv) a large collection of EPN species and strains with rich genetic
diversity to select from (Figure 2).

The first step in genomics-assisted breeding of EPNs is the identification of desired traits and the
species or strains with those traits. For a single trait, a species exhibiting the desired character-
istic should be utilized. For example, S. monticolum is described as a cold-adapted EPN and
may be a good species for studying cold tolerance or developing cold-adapted strains [71].
Genomic tools can be used to identify trait-associated genes or DNA markers, which in turn can
facilitate the identification of genetically useful strains (Figure 2). However, it is important to
ensure that the traits have been appropriately analyzed for their effect on field efficacy. Analysis
should include the effect of these traits in the target field environment rather than only under
laboratory conditions.

Once traits have been identified, the next step is crossbreeding and selection. Similar to
traditional breeding, strains of EPNs bearing desirable traits can be crossed. Over several
generations, the progeny should exhibit improvement compared with the founding population.
Genomic information, such as DNA markers, can be used to evaluate the molecular effects of
selection. The combined use of traditional breeding and genomic tools may shorten the time
required for obtaining superior linages of EPNs.

The third step is confirmation of trait retention and improved field efficacy. This involves both lab
and field tests to confirm that the new progenitor strains perform better than the founding
population. If the new populations prove to be superior, they can be further propagated and
used. Multiple selected strains with improved traits (as represented by DNA markers) but with
variable genetic backgrounds should be maintained and intercrossed to prevent trait deteriora-
tion [17,18].
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Outstanding Questions
Which molecular techniques can be
used to consistently obtain stable
transgenic lines of EPNs?

Can protocols for RNAi and genetic
transformation be adapted for use in
EPNs, such that they will be broadly
adopted by members of the research
community?

How many genes influence traits that
are important for field efficacy?

Which of the genes that influence these
important traits are most amenable to
selection or genetic manipulation?

Which of the genes that influence field
efficacy traits, when altered, lead to
significant improvements in field
efficacy?
In addition to genomics-assisted breeding, genome sequences of EPNs can also be used for
direct genetic modification, which may include mutagenesis, transgenesis, and targeted gene
modification. Mutagenesis might generate novel genetic variations, yielding more effective genes
than those that currently exist. One common practice is to perform random mutagenesis
followed by selection [72]. This can accelerate the selection process, thereby allowing for
the analysis of larger ranges of genetic variation than are found in nature. Successful gains
in desired traits may then be useful themselves or in combination with other techniques, such as
transgenesis. Transgenes could be derived from the same species (intraspecific), different
species (interspecific), or even non-nematode organisms. Given that releasing transgenic
organisms into the environment remains controversial, transgenic nematodes may not be
the first option for EPN trait improvement. One alternative is utilization of CRISPR/Cas9, a
targeted gene-editing procedure allowing for direct changing of specific alleles. CRISPR-medi-
ated gene targeting can generate defined modifications in specific genes that mimic natural
alleles [73]. Genetically modified EPNs generated by this process are more likely to be publically
accepted since the final strains only contain modified alleles instead of genes from other
organisms. Of course, the prerequisite of successful CRISPR-mediated gene targeting is the
identification of genes that control the traits under selection.

Along with the advanced bioengineering tools and the availability of genomic information, it is
essential to remember the importance of genetic diversity in EPN improvement. One reason is
that large genetic diversity is an invaluable natural resource to select for useful traits and the
underlying genes. Another reason is that one may need to use integrated biocontrol using a
collection of EPN strains and/or species to better control multiple insect pests in one application,
rather than trying to develop a magic bullet.

Concluding Remarks
The availability of the genomic sequence data and putative proteomes provides a large number
of genes that could be useful in increasing the infectivity of EPNs. We highlighted proteases,
protease inhibitors, FAR proteins, and GPCRs as potential targets for improvement, although
there are certainly more genes and gene families waiting to be discovered in these species that
could be exploited. There are also many genes that could be used to increase infective juvenile
persistence and survival in the soil. Several known stress-tolerance genes, such as heat shock
proteins, trehalose-related molecules and pathways, as well as their orthologs and paralogs that
have been expanded in EPN genomes, remain to be functionally tested. EPN research is
burgeoning with possibility, but much remains intractable without the application of more
molecular tools (see Outstanding Questions) [56]. The field advanced significantly with the
sequencing of these genomes, but whether this will lead to actual improvements in the field
efficacy of EPN biocontrol remains to be seen.
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